US 2004/0268361 Al

embodiment there exists an instrumentation program able to
ascertain the correct aspects of a software system to control.
Also included is a method to allow administrators and end
users to view and modify those items to be virtualized by the
system.

[0061] In the automated program, the application to be
controlled is observed in order to gauge the aspects of
control. The automated program is capable of performing
this task during the installation process of the application,
during run-time of the application, or a combination of both.
In the preferred embodiment, the Operating System Guard is
embedded in a wrapper application. Post installation, or after
one or many uses of the software, the wrapper application
will query the Operating System Guard for a detailed list of
all of its actions. From this list of actions, the wrapper
application will create the configuration files required to
load and operate the Operating System Guard on subsequent
uses.

[0062] If used as part of the installation process, the
Operating System Guard, in the preferred embodiment, will
act as a virtual layer allowing the installation to be entered
into its environment only. After the installation, all of the
files, settings, et. al. can be dumped for reload later. In this
way, the installation will leave the original system intact and
will have automatically created the necessary configuration
files. When used during use of the application, the Operating
System Guard is able to record either differential modifica-
tions to the environment, or recodify the configuration files.

[0063] The Operating System Guard will pass its infor-
mation to the wrapper application for post-processing. In the
preferred embodiment, in addition to the automatic entries
that the system can create, the wrapper application is pro-
grammed with operating system specific and application or
domain specific knowledge. This knowledge is used to alter
the output of the process to reflect known uses of configu-
ration items or other entries. In the preferred embodiment, a
rules-based system is employed to compare observed behav-
iors with known scenarios in order to effect changes to the
coding.

[0064] The wrapper application is also used as a viewer
and/or editor for the configuration output of the process.
This editor, in the preferred embodiment, enables a system
administrator to add, edit, or delete items or groups of items
from the configuration. In observing the configuration
through the editor, the administrator can also make replicas
of the configuration, changing specific items as needed to
effect application level or user custom changes.

Dec. 30, 2004

[0065] Referring now to FIG. 1, an embodiment of the
present invention is illustrated functionally. In this embodi-
ment, two sets of application/user data 60 are illustrated. The
Operating System Guard 100 keeps the two instances of the
application 50 from interfering with one another. In addition,
as explained above, the operating system guard 100 serves
as an abstraction layer and as such collects commands and
communications between the application software 50 and
the actual operating system 10 of the client computer. As
illustrated graphically by the arrows, certain commands are
between the Operating System Guard and the software
application, this is in distinction to typical installations
where these commands would instead be acted upon by the
operating system itself, resulting in changes to the client
computer that might not necessarily be what the operator
intended. On the other hand, other commands pass through
the Operating System Guard and are then transferred to the
Operating System itself.

[0066] While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom-
passed by the appended claims.

[0067] What is claimed is:

1. A method for protecting computer programs from
inconsistent run-time conditions, comprising:

running a first application program on a software plat-
form;

providing the first application program with a first run-
time environment and a first set of services configured
to the first application program;

running a second application program on the same soft-
ware platform as the first application program;

providing the second application program with a second
run-time environment and a second set of services
configured to the second application program;

wherein the first run-time environment and first set of
services are different from the second run-time envi-
ronment and second set of services, respectively,
thereby providing the first and second application pro-
grams with different operating contexts within the same
software platform.

#* #* #* #* #*



